1.

Find the values of y for which the distance between the points P (2, - 3) and Q (10, y) is 10 units.

Answer»

Given: 

the distance between the points P (2, -3) and Q (10, y) is 10 units. 

To find: 

The value of y. 

Solution:

Coordinates are P (2, - 3) and Q (10, y) 

We use distance formula \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\) to find the distance between two points.

 Since PQ = 10 units 

S0,

\(\sqrt{(10 - 2)^2 + (y + 3)^2}\) = 10

On squaring both sides, we get

(10 - 2)2 + (y + 3)2 = 100

⇒ 82 + (y + 3)2 = 100 

⇒ 64 + y2 + 6y + 9 = 100 

⇒ 73 + y2 + 6y = 100 

⇒ 73 + y2 + 6y -100 = 0 

⇒ y2 + 6y - 27 = 0

In factorization, we write the middle term of the quadratic equation either as a sum of two numbers or difference of two numbers such that the equation can be factorized. 

⇒ y2 + 9y - 3y - 27 = 0 

⇒y(y + 9) - 3(y + 9) = 0 

⇒(y - 3)(y + 9) = 0 

⇒y = 3, - 9



Discussion

No Comment Found

Related InterviewSolutions