1.

Find the volume and whole surface of frustum of a square pyramid , thje sides of whosebase and top are 24 cm and 16 cm respectively and each of the edges of the frustum is 20cm.

Answer»

Solution :Given that a =24, b cm, Edge =e=20 cm
AB=(1)/(2)`xx`Diagonal `=(1)/(2)xxasqrt(2)=(b)(sqrt(2))`
`DC=(1)/(2)xx`Diagonal `=(1)/(sqrt(2)=(a)/(sqrt(2))`
DE=DC-EC=DC-AB=`(a)(sqrt(2))-(b)/(sqrt(2))`
To find height h,
we have for sqare FRUSTUM
`e^(2)=h^(2)+(1)/(2)(24-16)^(2)`
`400=h^(2)+(1)/(2)xx8xx=h^(2)+32`
`h^(2)=400-32=368 rarrh=19.18 cm`
volume `V=(1)/(3)h(A_(1)+sqrt(A_(1)A_(2))+A_(2)`
`A_(1)=a^(2)=24^(2)=576, A_(2)=b^(2)=16^(2)=256`
`V=(1)/(3)xx19.18(576+384+256)=777.29 cm^(2)`
Total SURFACE area =slant surface + Area of the TOP and bottom faces
`=(1)/(2)` (sum of the perimeters `xx` slant height +`a^(2)+b^(2)`

[AF=b,DG=a]
[KM=b]
But DK=MG
DK=Mg=`(a-b)/(2)`
`e^(2)=l^(2)+DK^(2)`
`e^(2)=l^(2)+((a)/(2)-(b)/(2))^(2)`
`(20)^(2)=l^(2)+((24)/(2)(16)/(2^(2)))rArr400=l^(2)+(4^(2))`
`[l^(2)`=384 `rArr l=sqrt(384)`=19.6]
Total surface area `=(1)/(20)xx4xx16xx4)xx(19.6)+24^(2)+16^(2)`
`=(1)/(2)(96+64)xx19.6+576+256`
`=(1)/(2)xx160xx19.6+576+256`
=1568+576+256=2400 `cm^(2)`


Discussion

No Comment Found

Related InterviewSolutions