InterviewSolution
Saved Bookmarks
| 1. |
Find the volume of a parallelopiped having three coterminus vectors of equal magnitude `|a|` and equal inclination `theta` with each other. |
|
Answer» Correct Answer - `|veca|^(3)sqrt(1+ 2cos theta ) (1 - cos theta)` Let `veca, vecb and vecc` be three vectors of magnitude `|veca|` and equal inclination `theta` with each other. volume of parallelepiped = `( veca. (vecb xx vecc) = [veca vecb vecc]` `and [veca vecb vecc]^(2)= |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(veca.vecc, vecb.vecc, vecc.vecc):}|` `|veca|^(2)|{:( 1, costheta, costheta),(costheta,1,costheta),(costheta, costheta, 1) :}|` ` |veca|^(6) ( 2cos^(3) theta- 3cos^(2)theta + 1) ` `|veca|^(6) (1-costheta)^(2) ( 1+ 2costhetaa)` ` or [veca vecb vecc] = |veca|^(3) sqrt(1 + 2cos theta) ( 1- cos theta)` |
|