Saved Bookmarks
| 1. |
Find whether the following equations have real roots. If real roots exist, find them `5x^(2)-2x-10=0` |
|
Answer» Given equation is `5x^(2)-2x-10=0` on comparing with `ax^(2)+bx+c=0` we get `a=5,b=-2` and `c=-10` `:.` Discriminant `D=b^(2)-4ac` `=(-2)^(2)-4(5)(-10)` `=4+200=204gt0` Therefore the equation `5x^(2)-2x-10=0` has two distinct real roots. Roots `x=(-b+-sqrt(D))/(2a)` `=(-(-2)+-sqrt(204))/(2xx5)=(2+-2sqrt(51))/10` `=(1+-sqrt(51))/5=(1+sqrt(51))/5,(1-sqrt(51))/5` |
|