1.

find `x` and`y` for which the inequalities hold `(x^4+2ix)-(3x^2+iy)=(3-5i)+(1+2iy)`

Answer» Correct Answer - `(x=2, y=3) or (x= -2, y=(1)/(3))`
`(x^(4)-3x^(2))+i(2x-y)=4+(2y-5)i`
`rArr" "(x^(4)-3x^(2)-4)+i(2x-y-2y+5)=0`
`rArr" "x^(4)-3x^(2)-4=0 and 2x - 3y + 5 = 0`.
Now, `x^(4)-3x^(2)-4=0 rArr (x^(2)-4)(x^(2)+1)=0 rArr x = 2 or x = -2`.
`(x = 2 rArr y = 3) and (x = -2 rArr y = (1)/(3))`.


Discussion

No Comment Found