1.

For any matrix A rank (A) + nullity (A) = dim ( codomain, of associated liner map A) true / false​

Answer» <html><body><p><strong>Answer:</strong></p><p>The rank–nullity theorem is a theorem in linear algebra, which asserts that the dimension of the <a href="https://interviewquestions.tuteehub.com/tag/domain-957896" style="font-weight:bold;" target="_blank" title="Click to know more about DOMAIN">DOMAIN</a> of a linear map is the <a href="https://interviewquestions.tuteehub.com/tag/sum-1234400" style="font-weight:bold;" target="_blank" title="Click to know more about SUM">SUM</a> of its rank (the dimension of its image) and its nullity (the dimension of its <a href="https://interviewquestions.tuteehub.com/tag/kernel-532214" style="font-weight:bold;" target="_blank" title="Click to know more about KERNEL">KERNEL</a>).[1][2][<a href="https://interviewquestions.tuteehub.com/tag/3-301577" style="font-weight:bold;" target="_blank" title="Click to know more about 3">3</a>][<a href="https://interviewquestions.tuteehub.com/tag/4-311707" style="font-weight:bold;" target="_blank" title="Click to know more about 4">4</a>]</p><p></p></body></html>


Discussion

No Comment Found

Related InterviewSolutions