InterviewSolution
Saved Bookmarks
| 1. |
For any triangle ABC, prove that`(b+c)cos((B+C)/2)=acos((B-C)/2)` |
|
Answer» We know,`a/sinA = b/sinB = c/sinC = k` where, k is a constant. `:. (b+c)/a = (k(sinB+sinC))/(ksinA)` `= (sinB+sinC)/sinA` `=(2sin((B+C)/2)cos((B-C)/2))/(2sinA/2cosA/2)` As, `A+B+C = 180, So, B+C = 180-A` `:. (b+c)/a=(sin((180-A)/2)cos((B-C)/2))/(sin((180-(B+C))/2)cosA/2)` `=(sin(90-A/2)cos((B-C)/2))/(sin(90-(B+C)/2)cosA/2)` `=(cos(A/2)cos((B-C)/2))/(cos((B+C)/2)cosA/2)` `(b+c)/a= (cos((B-C)/2))/(cos((B+C)/2))` So, `(b+c)(cos((B+C)/2)) = a(cos((B-C)/2))` |
|