

InterviewSolution
Saved Bookmarks
1. |
Find the number of solution of `theta in [0,2pi]`satisfying the equation `((log)_(sqrt(3))tantheta(sqrt((log)_(tantheta)3+(log)_(sqrt(3))3sqrt(3))=-1` |
Answer» `log_(sqrt3)tantheta[sqrt(log_tantheta 3+log_sqrt3 3sqrt3)]=-1` `log_(sqrt3) tantheta[sqrt(2/log_sqrt3 tantheta)+3)]=-1` `ysqrt(2/y+3)=-1` `y^2(2/y+3)=1` `2y+3y^2=1` `3y^2+2y-1=0` `3y(y+1)-1(y+1)=0` `(y+1)(3y-1)=0` `y=-1` `log_sqrt3 tantheta=-1` `tantheta=(sqrt3)^(-1)` `tantheta=1/sqrt3` `theta=pi/6,7/6pi` `y=1/3` `log_sqrt3 tantheta=1/3` `tantheta=(sqrt3)^(1/3)`. |
|