1.

If `sin alpha + sin beta = a and cos alpha + cos beta =b`, show that `sin(alpha+beta)=(2ab)/(alpha^2+beta^2)`

Answer» `Sin(alpha) + Sin(beta)=a``Cos(alpha) + cos(beta)=b``2Sin((alpha +beta)/2)Cos((alpha-beta)/2)=a``2cos((alpha+beta)/2)cos((alpha-beta)/2)=b`then, `tan((alpha+beta)/2)= a/b`
By using angles of triangle,
`Sin((alpha+beta)/2)=a/sqrt(a^2+b^2)`
`cos((alpha+beta)/2)= b/sqrt(a^2+b^2)`
Hence, `Sin(alpha+beta)=2Sin((alpha+beta)/2)cos((alpha+beta)/2)``= (2ab)/(a^2+b^2)`


Discussion

No Comment Found