

InterviewSolution
Saved Bookmarks
1. |
If `f(theta)=(1-sin2theta+cos2theta)/(2cos2theta)`, then value of `8f(11^0)*f(34^0)`is ____ |
Answer» `f(theta) = (1-sin2theta+cos2theta)/(2cos2theta)` `=((cos^2theta+sin^2theta - 2sinthetacostheta) +(cos^2theta-sin^2theta) )/(2(cos^2theta - sin^2theta))` `= ((costheta - sintheta)^2+(costheta+sintheta)(costheta - sintheta))/(2(costheta+sintheta)(costheta - sintheta))` `=(costheta-sintheta+costheta+sintheta)/(2(costheta+sintheta))` `=(2costheta)/(2(costheta+sintheta))` `=1/(1+tantheta)` `:. f(theta) = 1/(1+tantheta)` `:. 8f(11^@)f(34^@) = 8(1/(1+tan11^@))(1/(1+tan34^@))->(1)` Now, `tan 34^@ = tan(45^@-11^@) = (tan45^@-tan11^@)/(1+tan45^@tan11^@) = (1-tan11^@)/(1+tan11^@)` `:. 1+tan34^@ = 1+ (1-tan11^@)/(1+tan11^@) = 2/(1+tan11^@)` Putting value of `1+tan34^@` in (1), `8f(11^@)f(34^@) = 8(1/(1+tan11^@))*((1+tan11^@)/2)` `=>8f(11^@)f(34^@) = 4.` |
|