1.

For any two sets A and B, prove that A ∪ B = A ∩ B = A = B ⟺ A = B

Answer»

Let 

A = B, then A ∪ B = A and A ∩ B = A 

A ∪ B = A ∩ B 

Thus, A = B …(i) 

Conversely, let 

A ∪ B = A ∩ B 

Now, let 

x ∈ A 

x ∈ (A ∪ B ) [∴ A ∪ B = A ∩ B] 

x ∈ (A ∩ B ) 

(x ∈ A and x ∈ B) 

x ∈ B 

A ⊆ B …(ii) 

 Now, let 

y ∈ A 

y ∈ A ∪ B 

y ∈ A ∩ B[∴ A ∪ B = A ∩ B] 

y ∈ A and y ∈ B 

y ∈ A 

∴ B ⊆ A …(iii) 

From equations (ii) and (iii), we get A = B



Discussion

No Comment Found

Related InterviewSolutions