1.

For any two sets A and B, prove that: A’ – B’ = B – A

Answer»

To show, A’ – B’ = B – A 

We need to show 

A’ – B’ ⊆ B – A 

B – A ⊆ A’ – B’ 

Let, x ϵ A’ – B.’ 

⇒ x ϵ A’ and x ∉ B.’ 

⇒ x ∉ A and x ϵ B 

⇒ x ϵ B – A 

It is true for all x x ϵ A’ – B’ 

∴ A’ – B’ = B – A 

Hence Proved



Discussion

No Comment Found

Related InterviewSolutions