

InterviewSolution
Saved Bookmarks
1. |
For any two sets of A and B, prove that: B’ ⊂ A’ A ⊂ B |
Answer» We have B’⊂ A’ To Show: A ⊂ B Let, x ϵ A ⇒ x∉ A’ [∵ A ∩ A’ = ϕ ] ⇒ x ∉ B’ [ ∵ B’ ⊂ A’ ] ⇒ x ϵ B [∵ B ∩ B’ = ϕ] Thus, x ϵ A ⇒ x ϵ B This is true for all x ϵ A ∴ A ⊂ B |
|