1.

For any two sets of A and B, prove that: B’ ⊂ A’ A ⊂ B

Answer»

We have B’⊂ A’ 

To Show: A ⊂ B 

Let, x ϵ A 

⇒ x∉ A’ [∵ A ∩ A’ = ϕ ] 

⇒ x ∉ B’ [ ∵ B’ ⊂ A’ ] 

⇒ x ϵ B [∵ B ∩ B’ = ϕ] 

Thus, 

x ϵ A ⇒ x ϵ B 

This is true for all x ϵ A 

∴ A ⊂ B



Discussion

No Comment Found

Related InterviewSolutions