InterviewSolution
| 1. |
For positive real numbers a, b, c, the least value of alogb – logc + blogc – loga + cloga – logb is (a) 0 (b) 1 (c) 3 (d) 6 |
|
Answer» (c) 3. a > 0, b > 0, c > 0 ⇒ loga, logb, logc are all defined. Also alogb – logc, blogc–loga, cloga–logb are all positive quantities. ∴ Applying AM > GM, we have \(\frac13\)[ alogb – logc + blogc–loga + cloga–logb ] > [alogb – logc. blogc–loga. cloga–logb]\(\frac13\) ...(i) Let x = alog b – log c . blog c – log a. clog a – log b ⇒ log x = (log b – log c) log a + (log c – log a) log b + (log a – log b) log c Now, loge x = 0 ⇒ x = e0 = 1. ∴ (i) ⇒ \(\frac13\)[ alogb – logc + blogc–loga + cloga–logb ] > 1 ⇒ alog b – log c + blog c – log a + clog a – log b > 3 ⇒ The least value of alog b – log c + blog c – log a + clog a – log b is 3. |
|