InterviewSolution
Saved Bookmarks
| 1. |
For the function `f(x)=(x^(100))/(100)+(x^(99))/(99)+ .......+(x^(2))/2)+x+1`. prove that f(1)=100f(0). |
|
Answer» Here `f(x)=(x^(100))/(100)+(x^(99))/(99)+.....+(x^(2))/(2)+x+1` `f(x) =(d)/(dx)[(x^(100)/(100)+(x^(99))/(99)+.....+(x^(2))/(2)+x+1]` `=(1)/(100)(d)/(dx)x^(100)+(1)/(99)(d)/(dx)x^(99)` `+......+(1)/(2)(d)/(dx)x^(2)+(d)/(dx)x+(d)/(dx)` `=(1)/(100).100x^(99)+(1)/(99).99x^(98)` `+....+(1)/(2)2x+1+0` `=x^(99)+x^(98)+.....+x+1` `rArr f(1)=1+1+.....+1+1` (upto 100 terms)=100 and `f(0)=0+0.....+0+1=1` `therefore f(1)=100:f(1)` Hence proved. |
|