1.

For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.

Answer»

Given: 

Intercepts cut off on the coordinate axes by the line 

ax + by + 8 = 0 ……(i) 

And are equal in length but opposite in sign to those cut off by the line 

2x – 3y + 6 = 0 ……(ii) 

Explanation: 

The slope of two lines are equal 

The slope of the line (i) is \(-\frac{a}{b}\)

 The slope of the line (ii) is \(\frac{2}{3}\) 

∴ \(-\frac{a}{b}=\frac{2}{3}\) 

a = \(-\frac{2b}{3}\)

The length of the perpendicular from the origin to the line (i) is 

The formula used: d = \(|\frac{ax+by+d}{\sqrt{a^2+b^2}}|\) 

d1 =   \(|\frac{a(0)+b(0)+8}{\sqrt{a^2+b^2}}|\) 

d1 = \(\frac{8\times3}{\sqrt{13b^2}}\)

The length of the perpendicular from the origin to the line (ii) is 

The formula used: d =   \(|\frac{ax+by+d}{\sqrt{a^2+b^2}}|\) 

d2 =   \(|\frac{2(0)-3(0)+6}{\sqrt{2^2+3^2}}|\)  

Given: d1= d2

  \(\frac{8\times3}{\sqrt{13b^2}}\)  =   \(\frac{6}{\sqrt{13b}}\) 

⇒ b = 4 

∴ a =   \(\frac{2b}{3}\)  =  \(-\frac{8}{3}\) 

Hence the value of a and b is  \(-\frac{8}{3}\) , 4.



Discussion

No Comment Found