1.

Form the given T-S diagram of a reversible carnot engine, find (i) work delivered by engine in one cycle (ii) heat taken from the source in each cycle . (iii) `DeltaS_(sink)` in each cycle .

Answer» (i) `W_(AB) = - nRT ln.(V_(2))/(V_(1))`
`DeltaS =(q_(rev))/(T) = - (W_(AB))/(T)`
`rArr - W_(AB) = TDeltaS = 600 xx100`
`" "- W_(BC) = -.^(n)C_(v)(T_(1) - T_(2))`
`" "- W_(CD) = TDeltaS = 300 xx(-100)`
`" "- W_(DA)= - .^(n)C_(v) (T_(2) - T_(1))`
net work delivered during one cycle `= - W_(AB) - W_(BC) - W_(CD) - W_(DA) = 300 xx 100 = 30 kJ`
Note: Net work done = area of the rectangle
(ii) `(W_("net"))/(q) = eta" "and " " eta= (600-300)/(600) =(1)/(2)`
`rArr q=` "heta taken from the the source" `(-W_("net"))/(1//2) = (30kJ)/( 1//2) = + 60 kJ`
(iii) `DeltaS_("sink") = - (Q_("sink"))/(T) " "also" "(q_("source") + q_("sink"))= 30`
`" "q_("source") = 600 " " rArr " "q_("sink") = - 30 kJ`
`rArr " "DeltaS_("sink") = (-q_("sin K"))/(T) = (_(-30000J))/(100) = 100 J//K`


Discussion

No Comment Found

Related InterviewSolutions