1.

Four numbers are in A.P. If their  sum is 20 and sum of their squares is 120, then find the numbers.

Answer»

Let in four numbers,

First number = a – 3d

Second number = a – d

Third number = a + d

Fourth number = a + 3d

Sum of four number is 20

∴ 20 = (a – 3d) + (a – d) + (a + d) + (a + 3d)

⇒ 20 = 4a

⇒ a = 5

Sum of squares of four numbers is 120.

∴ (a – 3d)2 + (a – d)2 + (a + d)2 + (a + 3d)2 = 120

⇒ [a2 + 9d2 – 6ad + a2 + d2 – 2ad + a2 + d2 + 2ad + a2 + 9d2 + 6ad] = 120

⇒ 4 (a2 + 5d2) = 120

⇒ a2 + 5d2 = 30 [∵ a = 5]

⇒ 52 + 5d2 = 30

⇒ 25 + 5d2 = 30

⇒ 5d2 = 30 – 25

⇒ 5d2 = 5

⇒ d2 = 1

⇒ d = ±1

Thus, a = 5 and d = ± 1

∴ Four numbers are 2, 4, 6, 8 or 8, 6, 4, 2



Discussion

No Comment Found