1.

\(\frac{{{{\sec }^2}\theta- {{\cot }^2}\left( {90^\circ- \theta } \right)}}{{cose{c^2}67^\circ- {{\tan }^2}23^\circ }} + {\sin ^2}40^\circ+ {\sin ^2}50^\circ\)is equal to1). 02). 43). 24). 1

Answer»

TAN(90° - θ) = cotθ

Sin(90° - θ) = cosθ

Sin2θ + cos2θ = 1

Sec2θ – tan2θ = 1

cosec2θ – COT2θ = 1

Given,

$(\frac{{{{\sec }^2}\theta- {{\cot }^2}\left( {90^\circ- \theta } \right)}}{{COSE{c^2}67^\circ- {{\tan }^2}23^\circ }} + {\sin ^2}40^\circ+ {\sin ^2}50^\circ)$

$(= \frac{{{{\sec }^2}\theta- {{\tan }^2}\theta }}{{cose{c^2}67^\circ- {{\tan }^2}(90^\circ- \;67^\circ )}} + {\sin ^2}40^\circ+ {\sin ^2}\left( {90^\circ- 40^\circ } \right))$

$(= \frac{1}{{cose{c^2}67^\circ- {{\cot }^2}67^\circ }} + \;{\sin ^2}40^\circ+ co{s^2}40^\circ)$

= 1 + 1

= 2


Discussion

No Comment Found