1.

\(\frac{sin\,5θ}{sin\,θ}\) is equal to(a) 16 cos4θ – 12 cos2θ – 1 (b) 16 cos4θ – 12 cos2θ + 1 (c) 16 cos4θ + 12 cos2θ – 1 (d) 16 cos4θ + 12 cos2θ + 1

Answer»

(b) 16 cos4θ – 12 cos2θ + 1 

\(\frac{sin\,5θ}{sin\,θ}\) = \(\frac{sin\,(2\theta+3\theta)}{sin\,\theta}\)

\(\frac{1}{sin\,θ}\) {sin 2θ cos3θ + cos 2θ sin 3θ}

\(\frac{1}{sin\,θ}\) \(\big\{\)2 sin θ cos θ (4 cos3 θ - 3 cosθ) + (2 cos2 θ -1)(3 sin θ - 4 sin3 θ)\(\big\}\)

(∵ cos3A = 4cos3A – 3cosA, sin 3A = 3sinA – 4sin3A) 

= {2 cos θ (4 cos3θ – 3 cosθ) + (2 cos2θ – 1) (3 – 4 sin2θ)}.  (Note the step) 

= 8 cos4θ – 6 cos2θ + 6 cos2θ – 3 – 8 cos2θ sin2θ + 4 sin2θ 

= 8 cos4θ – 3 – 8 cos2θ (1 – cos2θ) + 4 (1 – cos2θ)         (∵ sin2θ + cos2θ = 1) 

= 8 cos4θ – 3 – 8 cos2θ + 8 cos4θ + 4 – 4 cos2θ 

= 16 cos4θ – 12 cos2θ + 1.



Discussion

No Comment Found