InterviewSolution
| 1. |
\(\frac{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin\theta }}} }}\) is equal to1). secθ - tanθ2). cosecθ - cotθ3). secθ - cotθ4). secθ + tanθ |
|
Answer» $(\FRAC{{\SQRT {1{\rm{\;}} + {\rm{\;sin\THETA }}} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin\theta }}} }} = \frac{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin\theta }}} }} \TIMES \frac{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }}{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }} = \frac{{\sqrt {\LEFT( {1{\rm{\;}} + {\rm{\;sin\theta }}} \right)2} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin}}2{\rm{\theta }}} }} = \frac{{\sqrt {\left( {1{\rm{\;}} + {\rm{\;sin\theta }}} \right)2} }}{{\sqrt {{\rm{cos}}2{\rm{\theta }}} }} = \frac{{1{\rm{\;}} + {\rm{\;sin\theta }}}}{{{\rm{cos\theta }}}} = \frac{1}{{{\rm{cos\theta }}}} + \frac{{{\rm{sin\theta }}}}{{{\rm{cos\theta }}}})$ |
|