InterviewSolution
Saved Bookmarks
| 1. |
Given `A=sin^2theta+cos^4theta,`then for all real `theta,`(a)`1lt=Alt=2`(b) `3/4lt=Alt=1`(c)`(13)/(16)lt=Alt=1`(d) `3/4lt=Alt=(13)/(16)` |
|
Answer» `A = sin^2theta+cos^4theta` `=>A = 1-cos^2theta+cos^4theta` `=>A= 1-cos^2theta(1-cos^2theta)` `=>A= 1-cos^2theta(sin^2theta)` `=>A= 1-1/4(2sinthetacostheta)^2` `=>A= 1-1/4sin^2 2theta` Now, we know, `0 le sin^2 2theta le 1` `=>0 le 1/4sin^2 2theta le 1/4` `=>3/4 le 1- 1/4sin^2 2theta le 1` `=>3/4 le A le 1` So, option - `(b)` is the correct option. |
|