InterviewSolution
Saved Bookmarks
| 1. |
given that `veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca ` is not a zero vector. Show that `vecb=vecc`. |
|
Answer» we have er`veca. Vecb = veca .vecc.` therefore, `veca.vecb-veca .vecc = 0 or veca. (vecb -vecc) = 0 ` Therefore, there are three possibilities : (i) , (ii) `vecb - vecc = vec0 and (iii) veca` is perpendicu `vecb - vecc` Again, `veca xx vecb = veca xx vecc`, therefore, `veca xx vecb - veca xx vecc = vec0` `or veca xx ( vecb - vecc) = vec0` Therefore, again there are three posibilities, `(i) veca= vec0, (ii) vecb - vecc = vec0 and (iii) veca` is parallel to `vecb - vecc`. now ` veca` is given to be a non-zero vector. therefore, we have the following possibilities left : `1. vecb -vecc= vec0` 2. `veca` is -perendicular to `vecb - vecc and veca` is parallel to `vecb - vecc`, which is absurd. Therefore, the only possibility , left is `vecb -vecc = vec0 or vecb = vecc` |
|