Saved Bookmarks
| 1. |
Help me....find the derivative of log(x+√(x^2+a^2)) |
|
Answer» ASSUMING that LOG is the NATURAL logarithm: y = log[x + √[x² + a²]] y' = d/dx[log[x + √[x² + a²]]] --- {Needs a chain rule} y' = 1 / [x + √[x² + a²]] * d/dx[x + √[x² + a²]] y' = 1 / [x + √[x² + a²]] * (1 + dy/dx[√[x² + a²]]) --- {NEED to chain rule one more TIME} y' = 1 / [x + √[x² + a²]] * (1 + 1 / 2√[x² + a²] * dy/dx[x² + a²]) y' = 1 / [x + √[x² + a²]] * (1 + 1 / 2√[x² + a²] * 2x) y' = (1 + x) ÷ √[x² + a²][x + √[x² + a²]] |
|