1.

Here We Go!!! Bichromatic Light Slit width is 1 mm and distance of select from screen is 1 m.Find minimum distance on screen from centre O where Maxima of both light coincide.​

Answer»

Here,

D = 1m

d = 1nm

\lambda_1 = 6000 \:   A \degree  \\  \\ \lambda_2 = 8000 \:   A \degree

Let us consider that nth Maxima of

6000 A° and

mth maximum of 8000 A° coincides.

So,

\sf y_1 = y_2 \\  \\   \sf\frac{<klux>N</klux> \lambda_1 D }{d}  = \frac{m \lambda_2 D }{d}  \\  \\  \sf   \frac{ \lambda_1}{ \lambda_2}  =  \frac{m}{n}  \\  \\  \sf   \purple{ \boxed{{\bold {m =  \frac{<klux>3</klux>}{4} n}}}}

Put

n = 4 and m = 3

☆ 4th bright fringe of

6000A° and 3rd bright

fringe of 8000A° will be at

same place .

i.e.

Minimum distance from centre where the coinside

is

\sf  \large \: y = \frac{n \lambda_1 D }{d}   \\  \\  =  \sf  \frac{4 \times 6000 \times  {10}^{ - 10} \times 1 }{ {10}^{ - 3} }  \\  \\   \huge  \green{ \bold{ \boxed { \boxed{ \sf y  = 24 \times  {10}^{ - 4} m}}}}



Discussion

No Comment Found

Related InterviewSolutions