1.

हल कीजिए `(dy)/(dx) =(4x + y+1)^(2).`

Answer» यहाँ `(dy)/(dx)=(4x+y+1) ^(2)" "...(1)`
माना ` 4x+y+1 =v" "...(2)`
x के सापेक्ष अवकलन करने पर,
`4+(dy)/(dx)=(dv)/(dx)`
`implies(dy)/(dx) =(dv)/(dx) -4" "...(3)`
समी (1),(2) और (3)से,
`(dv)/(dx)=v^(2) `
`implies (dv)/(dx) =v^(2) +4`
`implies (1)/(v^(2) +4)dv= dx`
समाकलन करने पर,
`int (1)/(v^(2)+2^(2))dv=int dx`
`int (1)/(v^(2) +2^(2))dc =int dx`
`implies 1/2 tna ^(-1) ((v)/(2)) =x+C`
`implies1/2 tan^(-1)((4x+y+1)/(2))=x+C.`


Discussion

No Comment Found