

InterviewSolution
Saved Bookmarks
1. |
हल कीजिए- `sqrt(1-y^(2))dx = (sin^(-1)y-x)dy, y(0)=0.` |
Answer» दिया हुआ अवकल समीकरण है- `sqrt(1-y^(2))dx = (sin^(-1)y-x)dy` `implies(dx)/(dy) =(sin ^(-1)y-x)/(sqrt(1-y^(2)))` `sqrt(1-y^(2))dx = (sin^(-1)y-x)dy` `implies(dx)/(dy) =(sin ^(-1)y-x)/(sqrt(1-y^(2)))` `implies(dx)/(dy) =(sin ^(-1)y)/(sqrt(1-y^(2)))-(x)/(sqrt(1-y^(2)))` `implies(dx)/(dy)+ (1)/(sqrt(1-y^(2)))x= (sin ^(-1)y)/(sqrt(1-y^(2)))" "...(1)` जो कि x में रैखिक अवकल समीकरण है. समी (1 ) की तुलना `(dx)/(dy) +Px =Q` से करने पर `P=(1)/(sqrt(1-y^(2)))` और `Q =(sin ^(-1))/(sqrt(1-y^(2)))` `therefore I. F. =e ^(intPdy )=e ^(int (1)/(sqrt(1-y^(2)))dy)=e^(sin^(-1)y)` अतः अभीष्ट हल है- `x xx(I. F.)=int(Q xxI. F.)dy+C` `implies x.e^(sin^(-1)y)=int ((sin ^(-1)y)/(sqrt(1-y^(2)))xx e ^(sin^(-1)y))dy+C` `impliesx.e ^(sin^(-1)y)=intt.e^(t)dt+C,` `[" माना"sin ^(-1)y=timplies(1)/(sqrt(1-y^(2)))dy=dt]` `impliesx.e ^(sin^(-1)y) =te^(t) -e^(t)+C` `implies xe^(sin ^(-1)y)=(sin ^(-1)ye ^(sin^(-1)y)-e ^(sin^(-1)y))+C` `impliesxe ^(sin ^(-1)y) =e^(sin ^(-1)y)(sin ^(-1)y-1)+C" "...(2)` समी (2 ) में `x=0` और `y=0` रखने पर `0=e^(0)(0-1)+Cimplies C=1` समी (2 ) में ` C=1` रखने पर, `xe ^(sin ^(-1)y)=e ^(sin ^(-1)y)(sin ^(-1)y-1)+1` `implies(x-sin^(-1)y+1)e^(sin ^(-1)y)=1.` |
|