1.

हल कीजिए- `sqrt(1-y^(2))dx = (sin^(-1)y-x)dy, y(0)=0.`

Answer» दिया हुआ अवकल समीकरण है- `sqrt(1-y^(2))dx = (sin^(-1)y-x)dy`
`implies(dx)/(dy) =(sin ^(-1)y-x)/(sqrt(1-y^(2)))`
`sqrt(1-y^(2))dx = (sin^(-1)y-x)dy`
`implies(dx)/(dy) =(sin ^(-1)y-x)/(sqrt(1-y^(2)))`
`implies(dx)/(dy) =(sin ^(-1)y)/(sqrt(1-y^(2)))-(x)/(sqrt(1-y^(2)))`
`implies(dx)/(dy)+ (1)/(sqrt(1-y^(2)))x= (sin ^(-1)y)/(sqrt(1-y^(2)))" "...(1)`
जो कि x में रैखिक अवकल समीकरण है.
समी (1 ) की तुलना `(dx)/(dy) +Px =Q` से करने पर
`P=(1)/(sqrt(1-y^(2)))` और `Q =(sin ^(-1))/(sqrt(1-y^(2)))`
`therefore I. F. =e ^(intPdy )=e ^(int (1)/(sqrt(1-y^(2)))dy)=e^(sin^(-1)y)`
अतः अभीष्ट हल है-
`x xx(I. F.)=int(Q xxI. F.)dy+C`
`implies x.e^(sin^(-1)y)=int ((sin ^(-1)y)/(sqrt(1-y^(2)))xx e ^(sin^(-1)y))dy+C`
`impliesx.e ^(sin^(-1)y)=intt.e^(t)dt+C,`
`[" माना"sin ^(-1)y=timplies(1)/(sqrt(1-y^(2)))dy=dt]`
`impliesx.e ^(sin^(-1)y) =te^(t) -e^(t)+C`
`implies xe^(sin ^(-1)y)=(sin ^(-1)ye ^(sin^(-1)y)-e ^(sin^(-1)y))+C`
`impliesxe ^(sin ^(-1)y) =e^(sin ^(-1)y)(sin ^(-1)y-1)+C" "...(2)`
समी (2 ) में `x=0` और `y=0` रखने पर
`0=e^(0)(0-1)+Cimplies C=1`
समी (2 ) में ` C=1` रखने पर,
`xe ^(sin ^(-1)y)=e ^(sin ^(-1)y)(sin ^(-1)y-1)+1`
`implies(x-sin^(-1)y+1)e^(sin ^(-1)y)=1.`


Discussion

No Comment Found