InterviewSolution
Saved Bookmarks
| 1. |
How many integers are there in the solution set of |2x + 6| < \(\frac{19}{2}\) ?(a) None (b) Two (c) Fourteen (d) Nine |
|
Answer» (d) Nine | 2x + 6 | < \(\frac{19}{2}\) ⇒ 2x + 6 < \(\frac{19}{2}\) or - (2x + 6) < \(\frac{19}{2}\) ⇒ - \(\frac{19}{2}\) < 2x + 6 < \(\frac{19}{2}\) ⇒ - \(\frac{19}{2}\) - 6 < 2x < \(\frac{19}{2}\) - 6 ⇒ \(-\frac{31}{2}\) < 2x < \(\frac72\) ⇒ \(-\frac{31}{2}\) < x < \(\frac72\) ⇒ - 7.75 < x > 1.75 ∴ The integers between –7.75 and 1.75 are –7, –6, –5, –4, –3, –2, –1, 0, 1, i.e., nine in number. |
|