InterviewSolution
Saved Bookmarks
| 1. |
How many terms of the sequence √3, 3, 3√3,… must be taken to make the sum 39 + 13√3 ? |
|
Answer» Given: Sum of GP = 39 + 13√3 Where, a =√3, r = 3/√3 = √3, n = ? By using the formula, Sum of GP for n terms = a(rn – 1 )/(r – 1) 39 + 13√3 = √3 (√3n – 1)/ (√3 – 1) (39 + 13√3) (√3 – 1) = √3 (√3n – 1) Let us simplify we get, 39√3 – 39 + 13(3) – 13√3 = √3 (√3n – 1) 39√3 – 39 + 39 – 13√3 = √3 (√3n – 1) 39√3 – 39 + 39 – 13√3 = √3n+1 – √3 26√3 + √3 = √3n+1 27√3 = √3n+1 √36 √3 = √3n+1 6+1 = n + 1 7 = n + 1 7 – 1 = n 6 = n ∴ 6 terms are required to make a sum of 39 + 13√3 |
|