

InterviewSolution
Saved Bookmarks
1. |
(i) (sec2 θ - 1)cot2 θ =1(ii) (sec2 θ - 1)(cosec2 θ - 1) = 1(iii) (1- cos2 θ) sec2 θ = tan2 θ |
Answer» (i) LHS = (sec2 θ − 1) cot2 θ = tan2 θ × cot2 θ (∵ sec 2θ − tan2 θ = 1) = \(\frac{1}{cot^2θ}\times{cot^2θ}\) = 1 = RHS (ii) LHS = (sec2 θ − 1)(cosec2 θ − 1) = tan2 θ × cot2 θ (∵ sec2 θ − tan2 θ = 1and cosec2 θ − cot2 θ = 1) = \(tan^2θ \times\frac{1}{tan^2θ}\) = 1 = RHS (iii) LHS = (1 − cos2 θ) sec2 θ = sin2 θ × sec2 θ (∵ sin2 θ + cos2 θ = 1) = \(sin^2θ \times\frac{1}{cos^2θ}\) = \(\frac{sin^2θ}{cos^2θ}\) = tan2θ = RHS |
|