1.

(i) (sec2 θ - 1)cot2 θ =1(ii) (sec2 θ - 1)(cosec2 θ - 1) = 1(iii) (1- cos2 θ) sec2 θ = tan2 θ

Answer»

(i) LHS = (sec2 θ − 1) cot2 θ

= tan2 θ × cot2 θ      (∵ sec 2θ − tan2 θ = 1)

\(\frac{1}{cot^2θ}\times{cot^2θ}\)

= 1

= RHS

(ii) LHS = (sec2 θ − 1)(cosecθ − 1)

= tan2 θ × cot2 θ (∵ sec2 θ − tan2 θ = 1and cosec2 θ − cot2 θ = 1)

\(tan^2θ \times\frac{1}{tan^2θ}\)

= 1

= RHS

(iii) LHS = (1 − cos2 θ) sec2 θ

= sin2 θ × sec2 θ    (∵ sin2 θ + cos2 θ = 1)

\(sin^2θ \times\frac{1}{cos^2θ}\)

\(\frac{sin^2θ}{cos^2θ}\)

= tan2θ

= RHS



Discussion

No Comment Found