InterviewSolution
Saved Bookmarks
| 1. |
If `((1+i)/(1-i))^m=1,`then find the least positive integral value of `mdot` |
|
Answer» We have `((1+i)/(1-i))=((1+i))/((1-i))xx((1+i))/((1+i))=((1+i)^(2))/((1-i^(2)))=((1+2i+i^(2)))/(2)=(2i)/(2)=i`. `therefore" "((1+i)/(1-i))^(m)=1 rArr i^(m) = 1`. And, we know that 4 is the least positive integer such that `i^(4) = 1` and therefore m = 4. |
|