1.

If `((1+i)/(1-i))^m=1,`then find the least positive integral value of `mdot`

Answer» We have
`((1+i)/(1-i))=((1+i))/((1-i))xx((1+i))/((1+i))=((1+i)^(2))/((1-i^(2)))=((1+2i+i^(2)))/(2)=(2i)/(2)=i`.
`therefore" "((1+i)/(1-i))^(m)=1 rArr i^(m) = 1`.
And, we know that 4 is the least positive integer such that `i^(4) = 1` and therefore m = 4.


Discussion

No Comment Found