1.

If 10th term of an A.P is 0 and 42nd term is -32, then nth term is ……………… A) 10 – n B) 8 – n C) 11 – n D) 9 – n

Answer»

Correct option is (A) 10 – n

Let a & d be first term & common difference of A.P.

We have \(a_{10}=0\;\&\;a_{42}=-32\)

\(\therefore a+9d=0\)         ______________(1)

\(a+41d=-32\)   ______________(2)    \((\because a_n=a+(n-1)d)\)

Subtract equation (1) from (2), we get

\((a+41d)-(a+9d)=-32-0\)

\(\Rightarrow32d=-32\)

\(\Rightarrow d=\frac{-32}{32}=-1\)

\(\therefore a=-9d=-(-9)=9\)         (From (1) & d = -1)

\(\therefore a_n=a+(n-1)d\)

\(=9+(n-1)d\)

\(=9-n+1\)

\(=10-n\)

Hence, \(n^{th}\) term of A.P. is 10 - n.

Correct option is A) 10 – n



Discussion

No Comment Found