1.

If \(2^{log_{10}3\sqrt3}\) = \(3^{k\,log_{10}}\)2 then the value of k is :(a) 1 (b) \(\frac{1}{2}\)(c) 2 (d) \(\frac{3}{2}\)

Answer»

(d) \(\frac{3}{2}\)

  \(2^{log_{10}3\sqrt3}\) = \(3^{k\,log_{10}}\)⇒ \(2^{log_{10}\big(3^{\frac{3}{2}}\big)}\) = \(3^{k\,log_{10}}\)2

\(2^{log_{2}\big(3^{\frac{3}{2}}\big).log_{10^2}}\) =  \(3^{k\,log_{10}}\)2       [Using logax = logbx .logab]

⇒ \(\bigg[2^{log_{2}\big(3^{\frac{3}{2}}\big)}\bigg]^{log_{10^2}}\) =  \((3^{k})^{log_{10}}\)⇒ \(2^{log_2\,3^{\frac{3}{2}}}\) = 3k

\(3^{\frac{3}{2}}\) = 3⇒ k = \(\frac{3}{2}\)               (\(a^{log_a\,x}\) = x)



Discussion

No Comment Found