1.

If 2sin2 θ + 3sin θ = 0, find the permissible values of cosθ.

Answer»

2sin2 θ + 3sin θ = 0 

∴ sin θ (2sin θ + 3) = 0 

∴ sin θ = 0 or sin θ = \(\frac {-3}{2}\)

Since – 1 ≤ sin θ ≤ 1, 

sin θ = 0

\(\sqrt{1-\cos^2 \theta} =0\)...[∴ sin2 θ = 1-cos2θ]

∴ 1- cos2θ = 0

∴ cos2θ = 1

∴ cos θ = ±1 …[∵ – 1 ≤ cos θ ≤ 1]



Discussion

No Comment Found