1.

If 3 cot θ = 2, find the value of \(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\).

Answer»

Given, 

3 cot θ = 2 

⇒ cot θ = \(\frac{2}{3}\)

\(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\)

From, let’s divide the numerator and denominator by sin θ. We get,

\(\frac{(4 –3 cot θ) }{(2 + 6 cot θ)}\)

\(\frac{(4 – 3(2/3)) }{(2 + 6(2/3))}\) [using the value of tan θ] 

\(\frac{(4 – 2)}{(2 + 4)}\) [After taking LCM and simplifying it] 

\(\frac{2}{6}\) 

= \(\frac{1}{3}\)

\(\frac{4sin\, θ\, -\, 3cos\, θ}{2sin\,θ \,+\, 6 cos\, θ}\) = \(\frac{1}{3}\).



Discussion

No Comment Found