InterviewSolution
| 1. |
If 5 tanθ = 4, then the value of \(\left( {\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 3\cos \theta }}} \right)\) is1). 1/72). 2/73). 5/74). 2/5 |
|
Answer» Given, 5tanθ = 4 ⇒tanθ = 4/5 We have to find the value of $(\LEFT( {\FRAC{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 3\cos \theta }}} \right))$ $(= \;\left( {\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 3\cos \theta }}} \right))$ $(=\left( {\frac{{cos\theta (5\frac{{\sin \theta }}{{cos\theta }} - 3)}}{{cos\theta (5\frac{{\sin \theta }}{{cos\theta }} + 3)}}} \right))$ (taking cosθ COMMON from numerator and DENOMINATOR) $(= \left( {\frac{{5tan\theta - 3}}{{5tan\theta + 3}}} \right))$ $(= \left( {\frac{{5 \times \frac{4}{5} - 3}}{{5 \times \frac{4}{5} + 3}}} \right))$ $(= \frac{{4 - 3}}{{4 + 3}})$ = 1/7 |
|