

InterviewSolution
Saved Bookmarks
1. |
If `a_1, a_2,a_3, ,a_n`is an A.P. with common difference `d ,`then prove that`"tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)` |
Answer» As `a_1,a_2,a_3...a_n` are in A.P., So, the left hand side can be written as, `L.H.S. = tan[tan^-1((a_2-a_1)/(1+a_1a_2))+tan^-1((a_3-a_2)/(1+a_2a_3))+...+tan^-1((a_n-a_(n-1))/(1+a_(n-1)a_n))]` `=tan[tan^-1a_2-tan^-1a_1+tan^-1a_3-tan^-1a_2+tan^-1a_4-tan^-1a_3...+tan^-1a_n-tan^-1a_(n-1)]` `=tan(tan^-1(a_n) - tan^-1(a_1))` `=tan(tan^-1((a_n-a_1)/(1+a_1a_n)))` As, `a_n - a_1 = (n-1)*d` So, it becomes, `=tan(tan^-1(((n-1)d)/(1+a_1a_n)))` `=((n-1)d)/(1+a_1a_n) = R.H.S.` |
|