1.

If `a+2b+3c=4,`then find the least valueof `a^2+b^2+c^2dot`

Answer» consider vectors `vecP=ahati+bhatj+chatkandvecq=hati+2hatj+3hatk`
`costheta= (a+2b+3c)/(sqrt(a^(2)b^(2)=c^(2))sqrt(1^(2)+2^(2)+3^(2)))`
`cos^(2)theta= ((a+2b+3c)^(2))/(14(a^(2)+b^(2)+c^(2)))le1`
`Rightarrow a^(2)+b^(2)+c^(2)ge8/7`
Hence, least value of `a^(2) + b^(2) + c^(2) is 8/7`


Discussion

No Comment Found

Related InterviewSolutions