InterviewSolution
Saved Bookmarks
| 1. |
If `a+2b+3c=4,`then find the least valueof `a^2+b^2+c^2dot` |
|
Answer» consider vectors `vecP=ahati+bhatj+chatkandvecq=hati+2hatj+3hatk` `costheta= (a+2b+3c)/(sqrt(a^(2)b^(2)=c^(2))sqrt(1^(2)+2^(2)+3^(2)))` `cos^(2)theta= ((a+2b+3c)^(2))/(14(a^(2)+b^(2)+c^(2)))le1` `Rightarrow a^(2)+b^(2)+c^(2)ge8/7` Hence, least value of `a^(2) + b^(2) + c^(2) is 8/7` |
|