InterviewSolution
Saved Bookmarks
| 1. |
If A and B are angles in the second quadrant, then prove that 4cosA + 3 cos B = -5 |
|
Answer» Given, \(\frac{sin A}{3} = \frac{sin B}{4} = \frac{1}{5}\) ∴ sin A = \(\frac{3}{5}\) and sin B = \(\frac{4}{5}\) We know that, cos2 A = 1 - sin2 = 1 - \((\frac{3}{5})^2 = 1 - \frac{9}{25} = \frac{16}{25}\) ∴ Cos A = ± 4/5 Since A lies in the second quadrant, cos A < 0 ∴ Cos A = – 4/5 Sin B = 4/5 We know that, cos2 B = 1 - sin2 B = 1 - \((\frac{4}{5})^2 = 1 - \frac{16}{25} = \frac {9}{25}\) ∴ Cos B = ± 4/5 Since B lies in the second quadrant, cos B < 0 ∴ cos B = - 3/5 ∴ 4cos A + 3 cos B = \(4(-\frac{4}{5}) + 3 (-\frac{3}{5})\) = \(-\frac{16}{5} - \frac {9}{5} = -\frac{25}{5}= -5\) |
|