1.

If a and b are position vectors of A and B respectively the positionvector of a point C on AB produced such that `vec(AC)=3 vec(AB)` isA. `3 vec(a)-2 vec(b)`B. `3vec(b)-2vec(a)`C. `3vec(a)+2 vec(a)`D. `2vec(a)-3vec(b)`

Answer» Correct Answer - B
Let the position vector for C be `vec(c )`
Clearly, B divides AC internally in the ratio `1:2`.
`therefore vec(b)=(2vec(a)+1*vec(c))/(2+1)rArr vec(c) = 3 vec(b) - 2 vec(a) `


Discussion

No Comment Found

Related InterviewSolutions