

InterviewSolution
Saved Bookmarks
1. |
If A and B are two sets, then prove that : `A cupB=A capBhArrA=B`. |
Answer» Let `A = B` `:. A cupB=A cupA=A` and `A capB=A capA=A` `rArr A cupB=A cap B` Again, let `A cup B=AcapB` To prove `A =B` Let `x in A` `rArr xin A cap B` `rArrx in A capB(becauseA cup B=A capB)` `rArrx in A and x in B` `rArr x in B` `:. A sube B` ....(1) Let `x in B` `rArr x in A cup B` `rArr x in A cap B(because A cup B=A cap B)` `rArr x in A and x in B` `rArr x in A` `:. B sube A` ....(2) From eqs. (1) and (2) `A = B` Therefore, `A cupB=AcapB hArrA=B`. Hence Proved. |
|