1.

If a, b and c are distinct positive numbers, then the expression `(a + b - c)(b+ c- a)(c+ a -b)- abc` is:A. positiveB. negativeC. non-positiveD. non-negative

Answer» Correct Answer - B
Using `A.M.geG.M.,` we have
`((b+c-a)+(c+a-b))/(2)gt[(b+c-a)(c+a-b)]^(1//2)`
`((c+a-b)+(a+b-c))/(2)gt{(c+a-b)(a+b-c)}^(1//2)`
and,
`((a+b-c)+(b+c-a))/(2)gt{(a+b-c)(b+c-a)}^(1//2)`
`implies" "cgt[(b+c-a)(c+a-b)]^(1//2),age{(c+a-b)(a+b-c)}^(1//2)`
and, `bgt{(a+b-c)(b+c-a)}^(1//2)`
`implies" "abcgt(a+b-c)(b+c-a)(c+a-b)[{:("On multiplying"),("three inequalities"):}]`
`implies" "(a+b-c)(b+c-a)(c+a-b)-abclt0`


Discussion

No Comment Found