

InterviewSolution
Saved Bookmarks
1. |
If a, b and c are in AP and also in GP, then A) a = b ≠ c B) a ≠ b = c C) a ≠ b ≠ c D) a = b = c |
Answer» Correct option is (D) a = b = c Given that a, b, c are in AP and also in G.P. \(\therefore a+c=2b\) ______________(1) and \(ac=b^2\) ______________(2) \(\Rightarrow ac=(\frac{a+c}2)^2\) (From (1)) \(\Rightarrow ac=\frac{a^2+c^2+2ac}4\) \(\Rightarrow a^2+c^2+2ac=4ac\) \(\Rightarrow a^2+c^2-2ac=0\) \(\Rightarrow(a-c)^2=0\) \(\Rightarrow a-c=0\) \(\Rightarrow a=c\) Put a = c in equation (1), we get a+a = 2b \(\Rightarrow2b=2a\) \(\Rightarrow b=a\) Hence, a = b = c Correct option is D) a = b = c |
|