InterviewSolution
Saved Bookmarks
| 1. |
If `a`, `b` are real and `a^2+b^2=1`, then show that the equation `(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))=a-ib` is satisfied y a real value of `x`. |
|
Answer» let x e real `(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))` `{(sqrt(1+x)-isqrt(1-x))/((a+x)+(1-x))}` `(1+x-1_x-2isqrt(1-x^2))/2` `(2x-2isqrt(1-x^2))/2` `x-isqrt(1-x^2)` `a=x` `b=sqrt(1-x^2)` `a^2+b^2=x^2+1-x^2=1`. |
|