1.

If `a`, `b` are real and `a^2+b^2=1`, then show that the equation `(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))=a-ib` is satisfied y a real value of `x`.

Answer» let x e real
`(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))`
`{(sqrt(1+x)-isqrt(1-x))/((a+x)+(1-x))}`
`(1+x-1_x-2isqrt(1-x^2))/2`
`(2x-2isqrt(1-x^2))/2`
`x-isqrt(1-x^2)`
`a=x`
`b=sqrt(1-x^2)`
`a^2+b^2=x^2+1-x^2=1`.


Discussion

No Comment Found