

InterviewSolution
Saved Bookmarks
1. |
If `a+b+c=0`then check the nature of roots of the equation `4a x^2+3b x+2c=0w h e r ea ,b ,c in Rdot` |
Answer» Correct Answer - Roots are real and distinct. For the given equation `4ax^(2) + 3bx + 2c = 0`, we have `D = (3b)^(2) - 4 (4a) (2c)` = `9b^(2) - 32 ac` = `9 (-a -c)^(2) - 32 ax ` `= 9a^(2) - 14 ac + 9c^(2)` ` = 9c^(2) (((a)/(c))^(2) - (14)/(9) (a)/(c) + 1)` ` = 9 (((a)/(c)-(7)/(9))^(2) - (48)/(81) + 1)` Which is always positive. Hence, the roots are real and distinct |
|