1.

If a, b, c are in A.P., then show that : (i) a2(b + c), b2(c + a), c2(a + b) are also in A.P. (ii) b + c - a, c + a - b, a + b - c are in A.P. (iii) bc – a2, ca – b2, ab – c2 are in A.P.

Answer»

(i) a2(b + c), b2(c + a), c2(a + b) are also in A.P. 

b2(c + a) - a2(b + c) = c2(a + b) - b2(c + a)

b2c + b2a – a2b – a2c = c2a + c2b – b2a – b2

c(b2 - a2) + ab(b - a) = a(c2 - b2) + bc(c - b) 

(b - a)(ab + bc + ca) = (c - b)(ab + bc + ca) 

b - a = c - b 

And since a, b, c are in AP, 

b - a = c - b 

Hence given terms are in AP.

(ii) b + c - a, c + a - b, a + b - c are in A.P. 

Therefore, 

(c + a - b) - (b + c - a) = (a + b - c) - (c + a - b) 

2a - 2b = 2b - 2c 

b - a = c - b 

And since a, b, c are in AP, 

b - a = c - b 

Hence given terms are in AP.

(iii) bc – a2, ca – b2, ab – c2 are in A.P. 

(ca - b2) – (bc - a2) = (ab - c2) – (ca - b2

(a - b)(a + b + c) = (b - c)(a + b + c) 

a - b = b - c 

b - a = c - b 

And since a, b, c are in AP, 

b - a = c - b 

Hence given terms are in AP



Discussion

No Comment Found