InterviewSolution
Saved Bookmarks
| 1. |
If a, b, c are in G.P. and 4a, 5b, 4c are in A.P. such that a + b + c = 70, then what is the value of the smallest of the numbers a, b and c? |
|
Answer» a, b, c are in G.P. ⇒ b2 = ac ...(i) 4a, 5b, 4c are in A.P. ⇒ 2 x 5b = 4a + 4c ⇒ 10b = 4a + 4c ⇒ 5b = 2a + 2c ...(ii) Also, given a + b + c = 70 ...(iii) ⇒ 2a + 2b + 2c = 140 ⇒ 5b + 2b = 140 (From (ii)) ⇒ 7b = 140 ⇒ b = 20. Now, from (i), 400 = ac. (∵ b = 20) Also, from (ii), a + 20 + c = 70 ⇒ a + c = 50 ∴ (a – c)2 = (a + c)2 – 4ac = 2500 – 1600 = 900 ⇒ a – c = ± 30 ∴ a + c = 50 and a - c = ± 30 ⇒ a = 40, c = 10 or a = 10, c = 40. ∴ The least value out of a, b and c is 10. |
|