1.

If a, b, c are positive real number such that `lamba` abc is the minimum value of `a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2))`, then `lambda`=A. 1B. 2C. 3D. 6

Answer» Correct Answer - D
Using `A.M.geG.M.`, we have
`(a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)))/(6)ge(ab^(2)ac^(2)bc^(2)ba^(2)ca^(2)cb^(2))^(1//6)`
`implies" "(a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)))/(6)geabc`
`implies" "a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2))ge6abc`
`implies" "lambda=6`


Discussion

No Comment Found