1.

If a, b, c are positive real numbers, then the minimum value of `a^(logb-logc)+b^(logc-loga)+c^(loga-logb)`isA. 3B. 1C. 9D. 16

Answer» Correct Answer - A
Using `A.M.geG.M.,` we have
`(a^(logb-logc)+b^(logc-loga)+c^(loga-logb))/(3)`
`ge{a^(logb-logc)xxb^(logc-loga)xxc^(loga-logb)}^(1//3)`
Let `a^(logb-logc)xxb^(logc-loga)xxc^(loga-logb)=lambda`.Then,
`loglambda=(logb-logc)loga+(logc-loga)logb+(loga-logb)logc`
`implies" "loglambda=0implieslambda=1`
`a^(logb-logc)+b^(logc-loga)+c^(loga-logb)ge3`
Hence, the minimum value of
`a^(logb-logc)+b^(lobc-loga)+c^(loga-logb)`is 3.


Discussion

No Comment Found