1.

If `A ,B ,C ,D`are four distinct point inspace such that `A B`is not perpendicular to `C D`and satisfies ` vec A Bdot vec C D=k(| vec A D|^2+| vec B C|^2-| vec A C|^2=| vec B D|^2),`then find the value of `kdot`

Answer» Let A be the origin, and the position vectors of B,C
and D be `vecb,vecc,vecd`
`vec(AB).vec(CD)=k(|vec(AD)|^(2)+|vec(BC)|^(2)-|vec(AC)|^(2)-|vec(BD)|^(2))`
or ` (vecb).(vecd - vecc)`
`k = [(vecd)^(2)+(vecc-vecb)^(2)-(vecc)^(2)- (vecd-vecb)^(2)]`
`or vecb.vecd-vecc=k (-2vecb.vecc+ 2vecb .,vecd)`
or k 1/2


Discussion

No Comment Found

Related InterviewSolutions